Structural, optical and photoelectrochemical characterizations of monoclinic Ta3N5 thin films.
نویسندگان
چکیده
Monoclinic Ta3N5 thin films were synthesized by thermal nitridation of amorphous Ta2O5 films directly sputtered by radio frequency magnetron sputtering. The samples were studied by high resolution transmission electron microscopy, X-ray photoelectron spectroscopy, UV-Vis-NIR spectrophotometry, rietveld refinements, spectroscopic ellipsometry and electrochemical techniques. The surface composition of Ta3N5 thin film was found to be different than the underlying film, affecting the optical properties of the material. Rietveld refinement has confirmed that the nitridation process results in Schottky and oxygen substitutional defects within the crystalline structure of monoclinic Ta3N5 thin film. The optical constants of the film were obtained by spectroscopic ellipsometry within a spectral range of 4.60-0.54 eV, i.e. 270-2300 nm. The suitable parameterization was found to consist of three Tauc-Lorentz and one Lorentz oscillators. The conduction band, valence band and the flat band positions were determined by photoelectrochemical techniques, presenting a strong dependence on pH of the eletrolyte. Improved photocurrent was obtained in alkaline conditions and attributed to the shorter depletion region width measured by Mott-Schottky and the lower recombination life time measured by open circuit potential decay analyses.
منابع مشابه
Carrier dynamics of a visible-light-responsive Ta3N5 photoanode for water oxidation.
The physicochemical properties of a tantalum nitride (Ta3N5) photoanode were investigated in detail to understand the fundamental aspects associated with the photoelectrochemical (PEC) water oxidation. The Ta3N5 thin films were synthesized using DC magnetron sputtering followed by annealing in air and nitridation under ammonia (NH3). A polycrystalline structure with a dense morphology of the mo...
متن کاملUltraviolet detectors based on annealed zinc oxide thin films: epitaxial growth and physical characterizations
In this report, ultraviolet (UV) detectors were fabricated based on zinc oxide thin films. The epitaxial growth of zinc oxide thin films was carried out on bare glass substrate with preferred orientation to (002) plane of wurtzite structure through radio frequency sputtering technique. The structural properties indicated a dominant peak at 2θ=34.28º which was matched with JCPDS reference card N...
متن کاملTantalum nitride films integrated with transparent conductive oxide substrates via atomic layer deposition for photoelectrochemical water splitting.
Tantalum nitride, Ta3N5, is one of the most promising materials for solar energy driven water oxidation. One significant challenge of this material is the high temperature and long duration of ammonolysis previously required to synthesize it, which has so far prevented the use of transparent conductive oxide (TCO) substrates to be used which would allow sub-bandgap light to be transmitted to a ...
متن کاملThe effect of Ga-doping on the structural and optical properties of ZnO thin films prepared by spray pyrolysis
In this research, zinc oxide thin films with gallium impurity have been deposited using the spray pyrolysis technique. The structural and optical properties of these films are investigated as a function of gallium doping concentrations. The ZnO and ZnO:Ga films grown at a substrate temperature of 350 ºC with gallium doping concentrations from 1.0 to 5.0.%. The XRD analysis indicated that ZnO f...
متن کاملInfluence of Co and Fe substitution on optical and structural properties of zinc oxide thin films
Zn0.97TM0.03O (TM = Co, Fe) thin films were deposited onto glass substrates by the sol–gel method and the effects of transition metals substitution on structural and optical properties of ZnO films were investigated. The X-ray diffraction patterns revealed that the films have wurtzite structure. Optical transmittance of the films was recorded in the range of 200 -800 nm wave length and the band...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 37 شماره
صفحات -
تاریخ انتشار 2015